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Kelvin-Helmholtz instability of finite amplitude 

By P. G. DRAZIN 
University of Bristol 

(Received 16 June 1969) 

Non-linear Kelvin-Helmholtz instability, of two parallel horizontal streams of 
inviscid incompressible fluids under the action of gravity, is studied theoretically. 
The lower stream is denser and there is surface tension between the streams. 
Some progressing waves of finite amplitude are found as the development of a 
slightly unstable wave of infinitesimal amplitude. In particular, the non-linear 
elevation of the interface between the fluids is calculated. The finite amplitude of 
the waves does not equilibrate to a constant after a long time, but varies periodi- 
cally with time. In practice, slight dissipation should lead to equilibration at an 
amplitude close to a value given by the present theory. 

1. Introduction 
Recent experiments by Thorpe (1968, 1969) have made it possible to confirm 

Kelvin’s classical linear theory of instability of shear flow between two horizontal 
parallel streams of fluids (cf. Chandrasekhar 1961, 3 1 01). These experiments 
carry on beyond the linear development of instability, so the time seems ripe to 
develop the non-linear theory. 

The theoretical problem, both mathematically tractable and a fair model of 
the experiments, is the instability of the basic flow of inviscid incompressible 
fluids with velocity, density and pressure 

respectively, where z is the height and g the acceleration due to gravity. It is 
assumed that there is an irrotational perturbation of this flow on each side of the 
interface with elevation z = [(x, y, t ) ,  so that the velocity 

u = U+Vcjj (j = 1 for x < [,j = 2 for x > [). (2) 

Then it can be shown (cf. Chandrasekhar 1961, chapter XI) that the non-linear 
instability is governed by the following system : 

Vz$j = 0 (j = 1, 2 for z 2 5); 
Vc j j+O as z - t T c o ;  
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and reduce the interfacial conditions at  z = 5 to those at z = 0 by Maclaurin's 
theorem, getting 

(8) 

V$j-+O as z +  Too; (9) 

V~C$~ = 0 ( j  = 1, 2 for z 2 0); 

= y{[VZC{l+ (V~)2}-+VC.V(V5)2] [l + (VC)2]-4- vy) 

+ t ( l + Q ) P $ 4 2 ) z )  (2 = 0). (12) 

The linearized terms have been put on the left-hand side of equations (8)-( 12). 
When the non-linear terms are neglected, equations (lo)-( 12) can be written as 

L* = 0 (z = O ) ,  (13) 

where the linear operator and column vector are defined as 

The general solution of this linearized problem (8), (9), (13) for a typical normal 
mode of wave-numbers a in the x and p in the y direction is the real part of 

i?-l(s+iaU,)exp(i(ax+by) (15) 

d-l(s + iaUl) exp {i(ax +by) + Zz} *=(- 
exp {i(ax + PY)) 
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where 2 E + (a2+p2)4, A varies with time like est, and 

p1(s + iaU,)2/oz +p2(s + iaU2)2/Z + g(p1 - pJ + di2y = 0, 

323 

It can be seen, as a case of Squire's theorem, that if U2 =l U, the unstable 
component of given total wave-number & grows most rapidly when it is parallel 
to the basic flow (/? = 0). Therefore it might be anticipated that non-linear waves 
are observed to be two-dimensional, and indeed this is essentially correct. 
Accordingly, we shall assume two-dimensional waves in the vertical plane of 
(x, z )  henceforth. 

2. Waves stabilized by buoyancy and surface tension 
If surface tension and gravity are sufficiently strong, the flow may be stabilized 

when p1 > p2, with pure imaginary roots s given by (16) for all a. Then it is 
natural to  choose dimensionless variables by use of the length scale 

1 = {7/9(P1 - P 2 P  

and velocity scale V = {gy(p1-p2)/(p1+p2)2}~. For convenience, also define 
E = (pl -p2)/(pl  +pz) and make a Galilean transformation so that U2 = - U,. To 
put the two-dimensional form of the system (8)-( 12) in dimensionless variables in 
the usual way, we now replace Ul by Ul/ V = W say, U2 by - W ,  u by u/ V ,  x by 
x/l, t by Vt/ l  etc. Thus equations (lo)-( 12) become 

L+ = N+ ( Z  = 0); (17) 
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Therefore the wave is unstable if and only if 

W > W,(a) = ( ( 1  +a”/OL(l-E2)}k (21) 

Therefore the flow is unstable if and only if 

W > min W ,  = (2/( 1 - @)}*. 
O<CZ<m 

As E + 0 for fixed 1, V ,  the case of interfacial waves between streams of nearly 
equal density is approached. This is a fair approximation to  the experimental 
conditions of Thorpe (1969) for which E was quite small but W of order one. It also 
simplifies the theory somewhat; in particular, it gives symmetry between the 
upper and lower streams such that we may anticipate the existence of non-linear, 
as well as linear, waves moving with the mean velocity of the basic flow, namely 
with zero velocity. So we shall put E = 0 to get 

Lo+ = No+ (2 = 0) 
from equations (17) ,  where 

(23) 

and No is similarly N with E = 0. Then, by linear theory, a wave grows a t  the 
relative rate s = a( W 2  - Wz)$ and is unstable if W > W,(a) = (( 1 + a2)/a}*. The 
minimum of W,(a) is 24, occurring for OL = 1 .  Therefore, when W slowly increases 
from zero, we anticipate that instability will arise as soon as W exceeds 26, a t  
first growing exponentially as a wave of length 27r, later equilibrating as some 
non-linear standing wave motion of the same length. 

This non-linear wave can be found by the method of normal mode cascade, due 
to Stuart (1960) and Watson (1960). For small (W - W,) > 0 the linear wave 
grows exponentially with time at a slow rate, and we seek the subsequent develop- 
ment of the wave with time when non-linearity is important. This is found by 
perturbing the steady linear solution in the limit as W -+ W ,  + 0. So i t  is con- 
venient to rearrange equations (23) in the form 

Do+ = Mo+ ( z  = O ) ,  (25) 

with all the small linear terms as well as the non-linear terms in the operator iM,. 
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In  the first approximation as W + W, + 0, (25)  gives 

Dn+ = 0 (Z = 0). (28) 

By a suitable translation of the x axis, the general real linear solution of (S), 
(9) ,  ( 2 8 )  can be written as W, cos ax euz i sinax 1 + = +‘ = A ( t )  W, cosaxe-OLZ . (29)  

For small ( W - W,) > 0, the small amplitude A will grow exponentially until 
non-linearity becomes important and modifies the growth. At the same time the 
form + of the disturbance will be modified. To find these modifications, suppose 

+ = +’++”++a”+..., (30) 

where the nth term is O(An),  for fixed small ( W - W,) > 0. Now we can iterate the 
solution, finding an equation of the form 

Do+” = (No+)’’ (Z = 0). 
On evaluation this gives 

(D+”)~  = - A  sin ax - a ( ~  - @ ) A  cos ax + a 2 ~ , ~ 2 s i n  2ax, (32 a )  

(ZI+”)~ = A sin ax - a( w - W,) A cos ax - a2W,~2 sin 2ax, (32b)  

(D+”)3 = 2a( W - W,) W,A sin ax at z = 0. (32c )  

The inhomogeneous linear boundary-value problem (S), (9), (32) for cPrr can be 
solved conveniently with the aid of a suitable scala,r product and an adjoint 
operator D: of Do. So for any pair of real vectors 

+ =  $2 > + =  $2 > iE) c:) 
each representing a flow with period 2m/a in x, define their scalar product 
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By Fourier analysis, the scalar product can be seen to be the sum of the scalar 
products of pairs of components varying sinusoidally with pax ( p  = 0 , 1 , 2 , .  . .). 
But if +, + vary sinusoidally with pax, then #I, llfloc epax and &: @2 cc e - p y X .  

Therefore, on integration by parts, 

where the adjoint of’ Do is 
( $ 9  Do+) = (DIM +), (34) 

It follows that (34) holds for any pair +, + with period 2nla in x. 
We need one of the solutions +* of (8), (9) and the adjoint equations 

This merely needs replacement of W ,  by - W ,  in +’, just as D; is Do with - 
W,. Therefore we may take 

DZ+“ = 0 (X = 0). 

for 
- W, cos ax eaz 

( sinax 1 

1 

t#* = -Fcosaxe-az . (36) 

We are now ready to take the scalar product of equations (32) with +*. On use 
of the adjointness (34) and of Dz +* = 0 (z  = O), this gives a( W - W,) A = 0. This 
means that a( W - W,) A = o(A2) and must be treated in the next approximation, 
as will be seen in equation (41). Therefore we have 

(37) 

- A sin ax + aZW, A2 sin 2ax 
D,+” = A s i n a x - a 2 ~ , ~ 2 s i n ~ a x  ( z  = 0). 

0 

(38) 1 a-1A sin m eaz - taW, A2 sin 2 m  eza2 

- a-lA sin ax e-az + $aW, A2 sin 2ax e-2az . 

i 
It is now easy to find a particular integral of  (8), (9), (37), namely 

t# = 

” i 0 

In  fact this gives the general solution +‘ + +“ to order A2, because any comple- 
mentary function of (37) can be absorbed in +’ by redefinition of A .  (An exception 
occurs when a = 2-4, in which case an arbitrary multiple of the vectors with rows 
- W ,  sin 2ax eZaz, - W ,  sin 2ax e--2az, cos Sax may be added to +If. This is because 
W,(a) = W,(Za) when a = 2-4.) 

For the next approximation, 

Do+” = (Mo+)”’ ( 2  = 0) (39) 

* (40) i 
- a( W - W,) A cos ax - aAA cos 2ax + &a3W,A3(9 cos 3as - cos ax) 

- a( W - W,) A cos ax - aAA cos 2ax + &a3K A3( 9 cos 3ax: - cos ax) 

( 2 4  W - W,)W, A - 2a-lA’ + *a3( 3a - 5 WE) A3}sin ax 
+ 4=a3(3a + 7 WE) A3 sin 3az =i 
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The scalar product of c$* and equations (40) gives 

A’ = 2a2( W - W,)W,A - &a3( 1 + 4a2) A3, (41) 

with an error of O(A4). This equation is similar to that of a particle on a soft spring 
if W < W,. However, we are interested in the case W > W,. 

A 

Note that s2 = 2a2( W - W,)W,+ O( W - FQ2, so (41) agrees with the linear 
theory, whereby A cc est. Also steady non-linear waves are possible if 

A ’ =  A : =  1 6 ( W - ~ ) W , / 0 l ( l + 4 0 1 ~ ) .  (42 )  

Az = 2a2(W-@)W,A2-&a3(1+4a2)A4+constant. (43) 

For a more detailed study of (41), note that it has ‘energy’ integral 

This can be integrated explicitly in terms of elliptic functions, but the essential 
features of the solutions are seen more easily in the phase plane of A and A. The 
trajectories (43) are drawn in figure 1. It can be seen that the basic flow ( l ) ,  
represented by the origin in the phase plane, is unstable. Any infinitesimal 
perturbation of the basic state develops into a standing wave, represented by a 
trajectory passing near the origin in the phase plane. In  general this trajectory is 
an elongated figure of eight, with a narrow waist near the origin and with ampli- 
tude 24A, approximately. Exceptionally it is a closed curve like a half of the 
figure of eight. In  either case a standing wave of finite amplitude develops, 
having wavelength 27rla in the x direction. This wave is periodic in time too, 
because the trajectories in the phase plane are closed, and has maximum ampli- 
tude 24A, approximately. The period is long, being longer the smaller the initial 
disturbance is, and approaching infinity for a trajectory that approaches the 
origin. 
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Using relation (41), we find that (40) becomes 

( z  = 0). (44) 

- a(( w - w,) A + +a2&43} cos ax - aAA cos 2ax 

+ +"A 3 cos 3ax 

- a(( W - W,) A + +a2% A3) cos ax - aAA cos 2ax 

+ #a3& A3 cos 3ax 

- Zaw,{( W - W,)A + 4a2WcA3} sinax 

+ ;a3( 3a + 7 Wz) A3 sin 3ax 

i 
\ 

Do +'" = 

Therefore we may take the solution 

1 + 4a2 
( ( W - W , ) A  ++a2&43}cosaxea~- AA cos 2ax e2ac 

2( 1 - 2a2) I 

I- a"( 1 7a2 - 4) 
16(3a2- 1 )  

- A3 cos 3ax e3a2 

1 +4a2 
{ ( W - W , ) A  +&z2W,A3}cosaxe-~~- AA cos 2ax e-2az 

2( 1 - 2a2) 

I a2K( 17a2 - 4) 
16(3a2- 1)  

- A3 cos 3az ec3ae 

at( 2 - a2) 
A3 sin 3ax \ -*AA 1 - 2a2 sin 2ax - 16(3a2- 1 )  I 

(45) 
The solution may be continued further in this way, but we shall stop here, now 

that the leading non-linear behaviour has been found. There are various sym- 
metries in this problem with e = 0; for example, equation (41) in fact has an error 
of O(A5), and equations (29), (38) and (45) may be extended to give 

a2( 2 - a2) 
A3sin3ax+O(A5siii5a.2). 

16(3a2- 1 )  
5 = A sinax+- A A  sin 2ax - 

2a2- 1 

(46) 

This result seems as suitable as any to compare with observations, because the 
elevation of the interface is one of the least difficult variables to measure. It 
gives unsteady standing waves. The unsteadiness of the basic flow in the experi- 
ments, the viscosity of real fluids, and imperfect cleanliness of their interface 
may make verification difficult, but these results ( 4 l ) ,  (46) seem the most sus- 
ceptible to verification by experiment. 

3. Waves stabilized only by buoyancy 
Some of Thorpe's (1968) experiments were with smoothly stratified fluid, for 

which there is a basic flow with smoothly varying velocity and density and 
without surface tension. However, the discontinuous basic flow (1) that we have 
used is well known to successfully model many aspects of the linear instability of 
a smoothly varying flow (cf. Drazin & Howard 1966), particularly the stability 
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characteristics of long waves, so it is desirable to use the basic flow (1) as a model 
when there is no surface tension. 

For this case with y = 0, relation (16) gives 

s = -  (47) 
P1+ Pz P1+ P2 

for two-dimensional waves, and therefore instability for some (short) waves 
however strong the buoyancy of the basic flow may be. Here it is more natural to 
choose a velocity scale V = $( U, - U,) and a length scale 1 = V2/g  for the dimen- 
sionless variables. Again, let us suppose that U, = - U,, = - V ,  a t  first. Then the 
dimensionless form of the non-linear problem (8)-( 12) is 

The marginally stable wave in the linear problem for this case is not steady, 
but a progressive wave with phase velocity c = is/a = 8. So we should look not for 
a standing non-linear wave but rather for one that is steady with respect to an 
observer moving horizontally with some speed v in the x direction, where v = e in 
the linear approximation. To prepare for this we make a Galilean transformation 
of the system, replacing x by X = x - vt and therefore a/ax by a/aX and a p t  by 
a/at - w a p X .  Thus equations (48), (49) are unchanged in form if now V = (ajax, 
a/&), but (50), (51), ( 5 2 )  respectively become 
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In  this transformed system, the stability relation (47) becomes 

s = ia(v - E )  f {a2(  1 - €2) - a€}&. (56) 

If 

and 

V = €  

6 < €,(a) = {( 1 + 4 a y  - l)/2a, 

then there are unstable standing waves with relative growth rate 

Y = ~ { ( E ~ - - E ) ( I + ~ , E ) / E , } *  {(1+$)(ec-~)/eC}* as E + E , - o .  (59) 

Also note that there are stable steady linear waves if E ec and 

v = € T { E 2 - l + € / a ) * ,  (60) 

though oiily when E = 6, is a steady wave on the margin between stable and 
unstable waves. 

To iterate the slightly unstable solution for small A and small e, - e and w - E,, 

we first write (53)-(55) with the small terms on the right-hand side as 

D+ = M# (Z = 0), (61) 

where 

and (fM+), = ---+(v-€,)2+&-1--(1+&)- ac a< a$ ac a$, 
at ax az ax ax 7 

ai: ac a$ ac a4 - (v - E , )  -- - & -2+ - ( I  + &) - 2  
at ax a2 ax ax 7 

= 

The linea,r theory gives at once D#' = 0 ( x  = 0) and thence the first approxi- 
mation 

(64) 
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Next, retaining terms of order Az in (61), we get 

09'' = (M+)" ( X  = 0) (65) 

- A  sinaX+a(v-s,)A c o s a ~ + a 2 ( 1 - s , ) ~ ~ s i n ~ a ~  

- 2 a ( l +  S~,)S; ' (  1 - &l(e - e,) A sin ax + azs,A2 cos 2 a ~  

A sin ax - a ( v  - €,)A cos ax - az( 1 + s,)A2 sin 2aX ) . (66) 

As in $2, we need the adjoint D* of D. One finds that (4, D+) = (D*+,+) 
for all +, +, where now 

- 

D* E 

a -_ 
ax 

0 

a 
(1-%)= - 

0 -A\ 
a 
- 

ax 

(l+e,)- 201 ax " 
We shall need two solutions of the adjoint system D*+* = 0 ( z  = O),  and so take 
the solutions 

cos a X  eaz sin a X  eae 

(68) 

Now the scalar product of +* and equations (66) gives E - E ,  = 0 to the present 
order of approximation, which means that s - q  = O ( A z )  as A --f 0. Again, we 
must delay treatment of (e-s,)A until the next approximation. 

This leaves 

1 - A  sin ax + a(v - € , ) A  cos ax + az(1- q)AZsin 2 a ~  

D+" = AsinaX-a(v-s,.)AcosaX-az(1+s,)Azsin2aX ( z  = 0). (69) 

a2e, A2 cos 2aX 

i 
(a-1A sin a X  - (w - s,) A cos aX}eaz - +e,.AZ sin 2 a ~  ezaz 

i 
Therefore one can pick out the particular integral 

9'' = - {a-lA sin ax - (w - E,.) A cos aX}e-az + &,A2 sin 2aX e-2z2 , (70) i ?pc A z  cos 2aX 

which gives the general solution + = +' + 9'' + O(A3) on redefining A by adding 
to it a term of order A2. 

Taking terms of order A3 in (6l), we find 

D+'" = (M+)'" (2 = 0 ) ,  
and therefore 

(D+"r)l = - & z ~ ( ~ - E , ) ( ~ + ~ ~ , ) A ~ c o s ~ X - ~ ( ~ + E , ) A A  c 0 ~ 2 a X  

-az( 1 + 6,) (v - €,)A2 sin 2ax +:a3( 1 - s,) (1 + 2e,)A3 cos 3aX,  (72u) 
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(Dt$”’)2 = - +a3( I + E,) (I - 66,) A3 cos ax - a( 1 - e,) AA cos 2 a X  

- a2( 1 - e,) (v - e,) A2 sin 2 a X  + :a3( 1 + e,) ( 1  - 214 A3 cos 3aX,  

( 7 2 b )  (D+”)3 = { - 2 4  1 + EE)€,1( z - €:)-ye - 85,) A - 2a-I( 1 - f+) 2 -1k’  

- -$a3(5- -22~2, )A3+2a( l  -s2,)-l(v-ec)2A}sinaX 

+ 4( 1 - eE)-I(v - e,) A cos aX + $d3(7 - 10e:)A3 sin 3 a X ,  ( 7 2 c )  
at z = 0. 

The scalar product of y5* with equations ( 7 2 )  gives ( v -ec )A  as zero to the 
present approximation. This means we must put v = E ,  + O(A2) in order to find a 
co-ordinate frame with respect to which there is a non-1inea.r standing wave. In  
other words, to the present order of approximation the phase velocity of the 
non-linear wave is E,  with respect to the original frame. We may now neglect 
the term with (v - €J2 A in equation ( 7 2 c )  for the present approximation. It 
follows that the scalar product of +* and equations ( 7 2 )  gives, with an error of 
order A4, 

This non-linear ordinary differential equation has the same qualitative behaviour 
as (41) of $2. So again there is a stable steady non-linear wave of amplitude 

k’ = “ 2 ( 1 + E 2 , ) { ( E c - € ) E ~ ~ A - ~ a € ~ , A 3 ) .  ( 7 3 )  

A ,  = {2( e, - €)/as:}; ( 7 4 )  

as e -+ er - 0. However, this steady wave is not the limit of a small unstable 
disturbance of the basic flow A = 0 after a long time. Instead a small disturbance 
of the basic flow grows into an unsteady standing wave, which has a long period 
in time and a maximum amplitude of ZSA, approximately. These results also 
give 

- 4a3( 1 - e,) (1 + 6ec)A cos aX - a( 1 + e,)AA cos 2aX 

+ i a 3 ( i  -€,I (1 + 2 E c ) ~ 3 C o s  3ax i 
\ - $a3( 1 - 6$)A3 sin ax + $a3(7 - 10eE)A3 sin 3aX 1 (75) 

It follows that 

* (761 

&a2( 1 - er) (1 + 6ec)A3 cos a X P  - $( 1 - 3 ~ , )  AA cos 2aXe2az 

+ $a€,( 1 + 2eC)A3 cos 3aX e3ae 

+a2( 1 + ec) ( 1  - S ~ J  A3 cos aXe-aa - &( 1 + 3eC)AA cos 2 a ~ e - 4 a 3  

- &a€,( 1 - 2eC)A3 cos 3aX e-3a; 

- A A sin 2 a X  + +a2( 1 - 4 & 4 3  sin 3 a X  

+ +a2(1- 4e3A3sin 3 a X  + O(A4) as e -+ e,- 0. (77) 

This, with equations (64), ( 7 0 ) ,  gives 

6 = A sin a X  + iae, A2 cos 2 a X  - A A  sin 2 a X  
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Here the term - A A  sin 2aX introduces some asymmetry of the waves about 
their crests, much as the similar term in (46); when A2 is increasing with time, the 
centre of a half wavelength has lesser x co-ordinate than the crest of the wave. 
This is in accord with one’s intuition that the crest of the wave bends with the 
stream of the basic flow. 

Even if the basic flow (1) were realized in an experiment, the above finite 
amplitude disturbances would not be observed, because the flow is always 
unstable to short waves, whatever the value of 8. However, the discontinuous 
basic flow (1)  does model the stability characteristics of a shear layer with 
smoothly varying velocity and density (cf. Drazin & Howard 1966). A smoothly 
varying shear layer can be completely stabilized by buoyancy when the Richard- 
son number is everywhere greater than a quarter, and so should have marginally 
unstable finite amplitude waves similar to those we have described above. Thus 
it is plausible that our results may be used qualitatively but not quantitatively to 
describe the onset of instability in a shear layer. In  particular, they give the 
non-linear deformation of layers of fluid particles of equal density, and show that 
instability grows into an unsteady non-linear wave steadily progressing in the 
direction of the denser fluid. 

4. Discussion 
On Landau’s theoretical grounds (cf. Landau & Lifshitz 1959, $27)  the 

spectrum of disturbances evolves towards turbulence as W increases substan- 
tially above W,. However, Thorpe’s (1968) photographs suggest that the non- 
linear wave itself is not unstable until the vortex sheet has rolled up, by which 
time y is no longer a single-valued function of x. So the representation of y as a 
Fourier series would be unable to describe much of the spectral evolution. 

Also the differences of the form of (41), (73) from that of Landau’s equation, 

should be noted. Any solution of Landau’s equation equilibrates such that 

IAI +-Ae= (2s/ l ) t  as t+co if s ,  1 > 0. 

However, this is not so for equations (41), (73) .  This difference is due to the 
presence of a second, rather than a first, time derivative in each of (41), (73). They 
are characteristic of the non-linear instability of plane parallel flows with 
buoyancy, because the equation governing the linear instability of these flows 
has a second time derivative. For example, the Taylor-Goldstein equation 
(cf. Drazin & Howard 1966, equation (5.1)) governing the instability of the basic 
flow U(z)i of inviscid incompressible fluid with density p,(x) is essentially 

where $‘ is the stream function of the two-dimensional perturbation. 
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In  practice a little viscosity would dissipate the energy of the disturbance, 
albeit slowly. This would drastically change the form of the trajectories of the 
phase plane, figure 1.  In particular, the points of equilibrium at A = & A,  would 
become stable spiral points, and each trajectory would approach one of these 
points as t + + 00. Thus there is equilibration with wave amplitude A,  for a 
fluid with infinitesimal viscosity. This is qualitatively modelled by the equation of 
self-interaction for BBnard convection (Palm 1960, equation (6.17) with Aozl = 0). 

It was found in $ 3  that u = E to the highest approximation attained. Indeed, 
one might have put v = E at fwst for all E - eC by direct use of the method of 
Stuart (1960) and Watson (1960). However, the method used above with a 
Galilean transformation is instructive. In  particular, it gives the non-linear 
development of the stable linear disturbances when E > E,. For v can always be 
chosen so that one root s of (56) is zero when E > eC. The non-linear development of 
such a wave is given by equations (72), there being steady non-linear waves with 
amplitudes 

2 €,-€ ( V - € ) 2  4 A =  -- 
[a€,( Ec +*I] ' 

One may speculate on the relevance of this work to the generation of waves by 
wind. Of course the relevance of the model to a turbulent wind is little more than 
speculation. Under some circumstances the Kelvin-Helmholtz model may be 
relevant to ocean waves (Miles 1959), in which case non-linear mechanisms 
deserve consideration. 

Finally, we summarise this work, whose physical significance may be obscured 
by the large amount of algebra and calculus that has been necessary. The ideali- 
zations of the theoretical model-inviscid fluid, unbounded and steady horizontal 
uniform streams, clean interface, infinitesimal rate of growth of instability, 
two-dimensional disturbance-cannot be met in real experiments. But these 
idealizations have led to results which we anticipate to be qualitatively applicable 
to appropriate real flows. The linear solution for a slightly unstable mode has 
been iterated to account for non-linear self-interaction, and thereby it was shown 
that the mode did not break down into turbulence directly and rapidly but rather 
became a periodic non-linear wave. It was suggested that this non-linear wave 
would become steady if the fluid had viscosity, however small. These results are 
not expected to apply to the development of a very unstable linear wave, but 
should be applied to the wave-number of the most unstable linear disturbance in 
slightly supercritical conditions; thus a = 1 , 0 < W - 26 < 1 in the problem of § 2. 
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